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Most steady flows with constant vorticity and elliptical streamlines are known to be 
unstable. These, and certain axisymmetric time-periodic flows, can be analysed by 
Floquet theory. However, Floquet theory is inapplicable to other time-periodic flows 
that yield disturbance equations containing a quasi-periodic, rather than periodic, 
function. A practical method for surmounting this difficulty was recently given by 
Bayly, Holm & Lifschitz. Employing their method, we determine the stability of 
a class of three-dimensional time-periodic flows : namely, those unbounded flows 
with fixed ellipsoidal stream surfaces and spatially uniform but time-periodic strain 
rates. Corresponding, but bounded, flows are those within a fixed ellipsoid with 
three different principal axes. This is perhaps the first exact stability analysis of 
non-reducibly three-dimensional and time-dependent flows. Though the model has 
some artificial features, the results are likely to shed light on more complex systems 
of practical interest. 

1. Introduction 
The so-called ‘elliptical instability’, first revealed computationally and analytically 

by Pierrehumbert (1986) and Bayly (1986) respectively, has engendered much subse- 
quent interest. This instability, most easily analysed for unbounded steady primary 
flows with self-similar elliptical streamlines, is essentially inviscid in character and 
normally exhibits a broad band of unstable wavenumbers with surprisingly large 
growth rates. The instability mechanism is most simply viewed as a resonance, in 
which disturbances of plane-wave form are advected by the primary flow and so expe- 
rience periodic straining on account of the ellipticity. Suitably oriented wavenumbers 
have natural frequencies that are closely tuned to this periodic straining and so are 
unstable. 

The presence of boundaries modifies this picture in two respects. Firstly, the 
supposed elliptical flow may not satisfy the appropriate viscous boundary conditions 
at the container walls; and, secondly, the assumed plane-wave form of disturbances 
is likely to be incompatible with both inviscid and viscous wall boundary conditions 
of any realistic sort. Nevertheless, there is evidence that the basic elliptical instability 
mechanism still operates importantly for bounded flows. For instance, Waleffe (1990) 
has analysed the stability of a rotating flow within a container of elliptical cross- 
section that is almost circular. He established that the growth rates of the admissible 
linear modes agree well with those given by the corresponding unbounded theory 
whenever the characteristic length scale of the disturbance is small compared with the 
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cylinder radius. Additional support for this is provided by the ingenious experiments 
of Malkus (1989), conducted using a cylindrical tank with deformable walls. 

It has been conjectured that the elliptical instability and its near-relatives may have 
an important part to play in the continuous reinforcement of three-dimensionality 
within turbulent flows, over a quite broad band of length scales, since there are cer- 
tainly local regions within such flows that resemble the elliptical configuration. It has 
also been suggested that the elliptical Kelvin ‘cat’s eyes’ configuration associated with 
two-dimensional Tollmien-Schlichting waves in unstable boundary layers provides the 
source, via the elliptical instability, of the observed rapid growth of three-dimensional 
disturbances (though the present writers find other, longer-established, explanations 
more plausible in the latter case). Such speculations have in turn motivated theoreti- 
cal studies of other simple models: for instance, Craik (1989), Mansour & Lundgren 
(1990), Miyazaki & Fukumoto (1992), Craik & Allen (1992). The last of these ad- 
dressed the stability of an otherwise uniformly rotating flow subjected to periodic 
straining: there, the resonance is not primarily associated with streamline ellipticity, 
but rather with the externally imposed oscillation. By such studies, some insight may 
be gained into the likely robustness of the elliptical and related instabilities to external 
factors such as time-dependent straining and tilting of the flow. Clearly, in view of 
the complexity of turbulent flows, any effective mechanism must remain robust under 
such external influences. 

A perhaps greater motivation for the present work was the desire to provide defini- 
tive solutions, preferably without approximations, to simple but clear-cut problems 
of a kind little studied previously, and that require novel methods of analysis. A 
particular analytical difficulty was encountered, but not resolved, by Craik & Allen 
(1992) : though they could successfully analyse a class of axisymmetric time-oscillatory 
primary flows by means of Floquet theory, corresponding non-axisymmetric problems 
could not be treated similarly and they were forced to make approximations in such 
cases. Since then, a method has been developed by Bayly, Holm & Lifschitz (1996), to 
examine certain two-dimensional flows, that applies equally well in three dimensions. 
We use this here to give what we believe to be the first full stability analysis of an 
irreducibly three-dimensional and time-periodic flow. 

The class of flows that we examine in detail is fully described later. Briefly, it is 
the class of unbounded flows equivalent to those within a fixed ellipsoidal container 
with three different principal axes, and having spatially uniform rates of strain at 
each instant. Such flows are not normally steady, but precess periodically in time. 
Though these flows admit the elliptical instability, they do so within a time-periodic 
environment where both the instantaneous axis of rotation and the magnitude of 
the vorticity must change. The influence of temporal evolution on the stability 
characteristics of the flow is thereby explored. 

The stability of steady, unbounded, incompressible flows with spatially-uniform 
strain rates has been studied by Kelvin (1887), Lagnado, Phan-Thien & Leal (1984), 
Craik & Criminale (1986), Bayly (1986), Craik (1989), Waleffe (1990), Miyazaki & 
Fukumoto (1992) and others. In absence of body forces, all such primary flows, 
whether steady or not, necessarily have the form (see e.g. Craik & Criminale 1986 or 
Craik & Allen 1992): 

where S(t) is a 3x3 matrix with zero trace and such that 
U(X, t )  = S(t)x + UO(t)  (1.1) 

(1.2) 
dS 
- + s2 = ~ ( t )  
dt 

(symmetric) 
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and M(t) is an arbitrary symmetic matrix. Inclusion of body forces modifies the latter 
equation, but with no ensuing additional difficulties: see Craik (1989), Miyazaki & 
Fukumoto (1992). 

Three-dimensional disturbances are taken in the ‘plane-wave’ form 

d ( x ,  t )  = Re{v(t) exp[ia(t) * x]} (1.3) 

for each given v(O) ,  a(0). The wavenumber advection equation is then 

where the superscript ‘tr’ denotes transpose. This equation represents advection of 
the disturbance by the primary flow in such a way that material planes remain plane 
at all later times, though with differing orientation. 

When a steady primary flow U ( x )  has closed elliptical streamlines, the wavenumber 
vector a(t) is found exactly from (1.41, as an explicit periodic function: cf. Craik & 
Criminale (1986)’ Bayly (1986). 

The influence of kinematic viscosity v on v ( t )  is easily eliminated from the analysis 
by incorporating a multiplicative damping factor, 

v( t )  = exp { -v 1 a * adt} ~ , ~ ~ ( t ) .  

Then, the amplitude components vLnu(t)  of the reduced inviscid problem are found 
from the solution of an associated Floquet problem 

- = T(t)B, B(0) = 12, 
dB 
dt 

where Z2 is the unit matrix and T( t )  is a 2 x 2  time-periodic matrix known in terms of 
a(t). The reduction to a two-dimensional system and the precise form of the matrix 
T(t) are described later, in 54. 

To calculate the Floquet exponents, and so determine whether the chosen initial 
disturbance is stable or unstable, it is necessary only to compute over one time period 
(say 0 < t < z) to calculate the trace of B at t = 5 :  see Bayly (1986), Craik (1989), 
Waleffe (1990). Alternatively, the problem may be cast as a single Schrodinger-type 
equation 

where the potential V ( t )  is z-periodic. Typically, there are bands of instability 
corresponding to various internal resonances, much as for the Mathieu equation. 
Instability is suppressed only when these resonance criteria cannot be met for the 
flow in question. 

It is a remarkable fact that the above theoretical description is exact, provided 
that only one ‘plane-wave’ disturbance is present, and however large its amplitude. It 
remains exact for superpositions of plane waves with identical wavenumber orienta- 
tions, i.e. for general ‘planar’ disturbances. But other combinations of ‘plane-wave’ 
Fourier modes, with wavenumbers not all parallel to each other, give rise to non- 
linear interactions; consequently, for such general disturbances, the theory must be 
interpreted as a linearized approximation valid for sufficiently small amplitudes. 

A class of unbounded three-dimensional time-periodic primary flows was considered 
by Craik & Allen (1992): see also Mansour & Lundgren (1990) and Craik (1995). 
This class comprises flows with spatially uniform vorticity distorted by a pulsating 
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stagnation-point flow. Then, the wavenumber vector of the disturbance is doubly 
periodic (broadly speaking, with one period associated with advection by the mean 
vorticity and the other with the imposed pulsations), and these separate periodicities 
are not necessarily rationally related. Then, the matrix T(t)  and potential V ( t )  are not 
necessarily t-periodic, but may instead be quasi-periodic containing separate periodic 
functions with incommensurate periods. Floquet theory can still be used when all 
the periods present are rationally related, but numerical integration must then be 
carried out over 0 < t < M where M is the lowest common multiple of the periods. 
If M is very large, this integration becomes impracticable; and when the periods are 
incommensurate (i.e. M is infinite) Floquet theory is unavailable. 

It was found by Craik & Allen (1992) that a sub-class of time-periodic flows 
that are axisymrnetric is still amenable to Floquet analysis because the matrix T(t )  
and potential V( t )  are again z-periodic even though a(t) is not. They also showed 
that, with weak but non-axisymmetric periodic pulsations, an approximate procedure 
yields the strongest of the instability bands. Other apparently time-periodic flows, 
within a rotating and precessing axisymmetric ellipsoid, are also reducible to Floquet 
analysis because a rotating reference frame may be chosen within which these flows 
are steady, at the expense only of introducing a Coriolis force: see Kerswell (1993). 

2. Quasi-periodic potentials 
The question of how to cope with quasi-periodic forcing is an important one, for 

its resolution allows the stability of many more flows to be determined. This has 
recently been addressed by Bayly et al. (1996). Informed by theoretical studies of 
the Schrodinger equation with quasi-periodic potentials by Johnson & Moser (1982) 
and Simon (1982), they devised a convenient and convincing computational method. 
With (a, b) defined as ( 4 ,  dqldt), the Schrodinger equation (1.6) is first recast as 

Then, polar variables c(t), s ( t )  are introduced such that 

a(t) = exp[s(t)] sin[c(t)], b(t) = exp[s(t)] cos[c(t)]. 

These satisfy 
dc 
dt 2- = ( 1  + V )  + (1 - V )  cos(2c), 
ds 

2- = (1 - V )  sin(2c). 
dt I 

Note that s( t )  does not arise in the former. Clearly, the flow is unstable if, for some 
initial data, s( t )  grows without bound as t approaches infinity. 

Now, it is known from the theory of quasi-periodic potentials that, with rather 
weak restrictions on V(t ) ,  the limiting values 

exist and are independent of the initial values c(O), s(0). The limits W and I are 
respectively known as the ‘winding number’ and ‘growth rate’. For instability, it is 
sufficient that I > 0. Bayly et al. (1995) have convincingly shown that I can be 
approximated by computations over finite intervals, as convergence is fairly rapid. 
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Two families of two-dimensional flows with time-periodic strain rates were exam- 
ined by Bayly et al. The first family, chosen for analytical convenience, contains 
steady elliptical flow as a limiting case but leads in general to a potential V ( t )  that 
contains functions with two periods. Illustrative examples are given where the peri- 
ods are rationally and irrationally related. A single parameter that characterizes the 
orientation of the initial three-dimensional wavenumber a(0) is the angle 0 between 
it and the normal to the plane of the basic flow. Estimates of W and I were found, 
for various 8 in [O, i n ] ,  by computing for times long enough that the limits are 
convincingly approached. Graphs show their estimates of W and I versus ,u = cos 6. 

When the periods are rationally related, there are several distinct bands of in- 
stability, one of which is much stronger and wider than the rest. (The number of 
such bands, which can be predicted theoretically, is confirmed; but care is needed 
to discover the weakest of these, as they have very small growth rates.) Within each 
instability band, the winding number W takes a different constant value, and W 
increases monotonically with 1.1 between the bands. Identical results may be found by 
Floquet theory. 

When the periods are irrationally related (and Floquet theory is unavailable) 
estimates of W and I are plotted similarly, and several instability bands are again 
evident. However, it is now impossible to find all instability bands. Though these are 
infinite in number, and dense on intervals of the p-axis, all but a few are too weak to 
be of physical significance, in view of the expected damping role of viscosity. Again, 
the winding number W is constant within each band of instability. 

The second class of flows considered by Bayly et a!. is the family of time-periodic 
uniform-vorticity cores associated with externally strained Kirchhoff-Kida vortices 
(Kida 1981). These elliptically-shaped vortices can change their shape as they rotate 
or librate. The 'geometrical optics' approximation is invoked, to justify treatment of 
these flows as spatially infinite when the scale of the disturbance wavelength is small 
compared with the minor axis of the vortex core. In a similar manner, Bayly et al. 
then demonstrate that almost all members of this family of inviscid flows are strongly 
unstable to three-dimensional plane-wave disturbances. 

3. Three-dimensional time-periodic flows 
Two other classes of time-dependent primary flows that are amenable to the above 

method are briefly discussed by Craik (1995), but without actual results. The first class 
is that also discussed by Craik & Allen (1992). These have time-periodic principal 
rates of strain a, b, -a - b constantly directed along the coordinate axes, so that the 
matrix S of (1.1) is 

a( t )  = aocosQt, h(t)  = bocosQt, 52 constant. 
Because of (1.2), the off-diagonal components o = [q, 0 2 , 0 3 1 ,  which yield one half 
of the vorticity, are 

w = w o  exp(aoP), 0 2  = w20 exp(boP), 03 = w30 exp[-(ao + bo)P], (3.2) 

where P ( t )  = Q-' sin Qt and the wi0 are constants. Clearly, the periodic extension and 
contraction of vorticity is non-sinusoidal. Disturbances of the form (1.3) may now 
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be introduced. The resulting evolution equation (1.4) for the three components of 
wavenumber a(t) have quasi-periodic solutions, with analytical expressions available 
only in the axisymmetric case a0 = bo, 010 = 0 2 0  = 0 studied by Craik & Allen. The 
corresponding amplitude equations (1.5) or (1.6) in non-axisymmetric cases have a 
quasi-periodic matrix T(t) or potential V(t) expressible in terms of the a-components. 
Computation of the winding number W and growth rate I can then proceed as 
described above. Though details are not yet available, almost all such flows are likely 
to be strongly unstable. 

The second class of basic flows is that examined here. These are the three- 
dimensional unbounded time-periodic flows that correspond to (bounded) flows with 
spatially uniform vorticity within an ellipsoid, say (x /a)2 + ( y / b ) 2  + ( z / c ) ~  = constant: 
that is to say, ‘swirling’ flows with fixed, similar, ellipsoidal stream surfaces. Stability of 
steady and uniformly precessing flows, within fixed, rotating or precessing ellipsoids, 
has already been examined by Gledzer & Ponomarev (1992) and Kerswell (1993); 
but intrinsically time-periodic basic flows have not been examined before. If the 
‘geometrical optics’ approximation is invoked for small-scale disturbances, the above 
methods yield results valid for finite as well as for infinite domains. 

All possible primary flows with spatially uniform strain rates in this geometry have 
velocity components U = S(t)x with 

where from (1.2) 

dm1 c2 -b2  d02 a2 - c2 b2 - a2 
__ dt = (m) 02w3, ~ dt = (m) 0 3 0 1 ,  d03 dt = (-) b2 + a2 0 1 0 2 .  (3.4) 

For ‘plane-wave’ disturbances like (1.3), the wavenumber equation ( 1.4) becomes 

= -o x /?, /? = [aal, ba2, ca3], o = [al, 02, 03]. d/? - 
dt (3.5) 

As described in the next section the corresponding amplitude equation (1.5) is found 
to reduce to the form 

dP /dt ( dQ/dt ) = ( ::: 5:: ) ( ‘Q ) ’ 
where P = a1242 - a2u1 and Q = I a(0) I 242 and the rii are known time-dependent 
functions. This is readily cast in a form similar to (2.1) with suitably defined modulus 
and phase variables. The winding number W and growth rate I may then be 
computed for chosen initial data and the stability of the flow established. 

4. Formulation 

the disturbance satisfy 
It is known (Craik & Allen 1992) that the inviscid velocity components uinu = u for 

du/dt + I Z U  = 0, IZ = { ~ i j }  (4.1) 



The stability of ‘flows with ellipsoidal stream surfaces 385 

where 

By continuity we also have u * a = 0, i.e. 

ulal + u2a2 + u3a3 = 0, (4.2) 

which is automatically satisfied when (4.1) is. Seeking to reduce the three equations 
(4.1) to two coupled equations in just two unknowns, we introduce the dependent 
variables (cf. Waleffe 1990) 

P z a]  u2 - a2u1, Q =la(O)h. (4.3) 

From (1.4), (4.1) and (4.2), we obtain the two expressions 

and 

where the overdot (3 denotes dldt. Here, the velocity components u j  have been 
eliminated. These two expressions are now in the form (3.6), with functions rjj(t) 
known in terms of the wj(t) and ai(t). 

Next, polar variables p ,  4 are introduced such that 

P + iQ = pel4. (4.6) 

This gives 

from which we obtain 
p = cos 4P + sin 4Q 

p = p [r11 cos2 4 + r22 sin2 4 + (r12 + rZ1) sin 4 cos 41 . (4.7) 

On setting p = p(0)es@), equation (4.7) yields 

.i = (2> r11 - r22 cos24+ (9) sin2++ (9) 
upon use of trigonometric identities. To obtain an expression for 6, first note that, 
from (4.6), 
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$sin# = S C O S C ~  - rll cos# - r12 sin#, 

which leads to 

$=-r12+cot# [ ( 7 ) ( c o s 2 0 - 1 ) +  J.11 - r22 (7) r12 + r21 sin2# 1 , 
‘ 1  J 

on using (4.8). We therefore have the two equations 

From the theory of quasi-periodic potentials, the limits 

+ (V), (4.9) 

+ (v). (4.10) 

(4.11) 

(4.12) 

are known to exist under fairly general conditions, including those here. It is these 
limits that we shall compute to establish the stability properties. A rigorous proof 
of the theorem establishing existence of these limits is analytically challenging (see 
Johnson & Moser 1982; Simon 1982) and readers wishing to explore this territory 
may wish to enlist the help of an experienced guide. In practice, our computations 
of #( t ) / t  and s(t)/t settled down to virtually constant values within fairly short times 
and there is no doubt that the limits exist in our problem. 

In fact, unlike equation (7) of Bayly et al. the system (4.9) and (4.10) does not 
directly transform into the linear Schrodinger equation (1.6) for which the theory of 
quasi-periodic potentials was developed. Nevertheless the numerical results reported 
below conform with expectations. In particular, we find that the winding number 
W is constant in unstable regions and increases uniformly elsewhere as the control 
parameter varies. It is easy to see why this is so: for equations (4.4) and (4.5) can 
be reduced to Schrodinger form as follows. Elimination of Q yields a second-order 
equation for P ( t )  in the form 

P + p ( t ) P  + q( t )P  = 0. 

The substitution 

P ( t )  = S ( t )  exp [--; f p ( i ) d i ]  

gives the Schrodinger form 

where 

Since p ( t )  and q(t)  are quasi-periodic functions, J ( t )  also acts as a quasi-periodic 
potential. 

s + J ( t ) S  = 0 

J ( t )  f q - zp - ip2. 1 
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I " " ! '  " I " " 1  

0.2 0.4 0.6 0.8 1.0 
-0.1 1, 

0 0 2 0.4 0.6 0.8 1.0 0 

FIGURE 1. Growth rate I and winding number W versus cosB for ~ ( 0 )  = 0 and 03(0) = 1, with 
(u,  b, C )  = (3,2,1). 

5. Numerical results 
In order to find the limits W and I, the sets of equations (3.4) for o, (1.4) for 

a then (4.9) and (4.10), are integrated numerically over times sufficiently large that 
(4.11) and (4.12) are approached convincingly. We can take lo(0)l = 1, la(0)I = 1 and 
one of aj(0) = 0 without loss of generality. By choosing a2(0) to be equal to zero, we 
can introduce the variable 8 such that ~ ~ ( 0 )  = sin0 and a3(0) = cos8: this represents 
the angle between the initial wavevector of the disturbance and the z-coordinate axis. 
The initial values s(0) and 4(0) can also be taken as zero without loss as the limits 
are independent of these values. 

Upon declaration of a, b, c (which define the shape of the ellipsoid) and the initial 
values 0~,~(0),8, a numerical integration is initiated, generally over a time t = 1000, 
which was found to be sufficiently large for satisfactory convergence. The integration 
comprised a Merson form of the explicit Runga-Kutta method and consisted of a 
sequence of steps whose sizes were adapted throughout the integration in order that 
the final result should lie within a tolerance of lo-". Values of 8 were chosen between 
0 and $15 at intervals of 0.005 until the time limit was reached, and graphs were then 
plotted of coso against the large-time limits, I and W ,  approached by s ( t ) / t  and 
4( t ) / t  respectively. 

Cases examined in detail have (a, b,c) = (3,2,1) or (1,2,3), which are of course 
physically identical: others may be done similarly. Throughout we choose ~ ( 0 )  = 0, 
which entails some loss of generality; but other choices yield similar results. The 
evolution of the unstable regions is shown as the initial values of o1 and 0 3  are 
altered. 

Figure 1 shows the stability properties when (a ,  b, c) = (3,2,1) and ol(0) = 0 and 
~ ~ ( 0 )  = 1. This corresponds to a steady, purely elliptical fluid flow centred around 
the z-axis, with no fluid rotation around the x- or y-axes. This is equivalent to the 
Floquet case examined by Bayly (1986) and, in the special case of no body force, by 
Craik (1989). The figure clearly shows that just one instability band exists for the 
region 0.45 < 8 < 0.68: this is in agreement with the results of Bayly and of Craik. 

We then examined what happens when the primary motion of the fluid is not 
purely in the (x,y)-planes. To do this, a small initial component of rotation ol(0) 
was imposed. This has the result of introducing a time-periodicity into the basic flow 
which causes a marked change in the stability of the system. However, a numerical 
difficulty was encountered in this and similar cases, resulting in breakdown of the 
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FIGURE 2. Growth rate I and winding number W versus sin B for wl(0)  = 0.9972 and 
w3(0) = 0.075, with (a,b,c) = (1,2,3). 

-0.1 

0.31 

-0.4:/, I " " I " " I " " I " ' ~ I 

calculation of the winding number W for small 6. The source of the difficulty seems 
worth recording. This corresponds to cases where the initial disturbance wavevector 
lies almost along the z-axis. For these, difficulties arise since al and a2 can pass 
through, or very close to, zero at the same time. This causes problems with the 
calculation of the rij  expressions since they contain divisors in a: + a:. The problem 
was easily overcome by switching the greatest and least axes of the ellipsoid (3 and 
1) to lie along the z -  and x-axes respectively (instead of the x- and z-axes). The same 
numerical integration was then performed, but due to the switch, the initial values 
of 010 and a 3 0  were also interchanged to correspond to the same physical state as 
before. Correspondingly, the growth rates and winding numbers are plotted against 
sin 8 instead of cos 8 in order that the growth-rate curve conforms with that in figure 
1: however, the winding number W is no longer the same physical quantity, being 
referred to a different axis. 

Figure 2 shows such a case. Here two more instability bands have appeared 
on either side of the main band. These new bands have a maximum growth rate 
considerably smaller than that of the original elliptical instability and they span a 
much smaller range of angles 8. On further increases of ~ ~ ( 0 )  (with Iw(O)( = 1), many 
smaller instability bands appear and the three main bands continue to grow. Figures 
3 to 5 show such cases. Some of these bands are not sufficiently large to show up 
clearly in figure 5,  but figure 6 shows an enhanced resolution. 
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FIGURE 4. Same as figure 2 but for wl(0) = 0.968 and w,(O) = 0.25. 

-0 O I  1 O: 
6 0.'2 0:4 0:6 0:8 1:0 0 012 0:4 016 018 1:O 

FIGURE 5. Same as figure 2 but for wl(0) = 0.866 and wj(0) = 0.50. 

:", 

0 55  0.60 0.65 0 70 0.75 0.55 0.60 0.65 0.70 0.75 
sine 

FIGURE 6. Sub-interval of figure 5, with improved resolution. 

Such time-dependent flows are clearly highly unstable to a large set of disturbances. 
In figure 5,  for example, instability is found for almost every angle between 0 = 0 
and about sin-'0.81. The diagrams shown in figure 6 have been produced using 
&intervals of 0.0005 over a region of figure 5 with sin0 between 0.54 and 0.75. This 
figure shows clearly the complex structure in this interval, but even at this higher 
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resolution it is impossible to show exactly the large number of stability bands that 
exist, for they will be everywhere dense in some intervals. 

6. Discussion 
The inherent instability of steady two-dimensional elliptical flows - unless stabilized 

by viscosity on small enough length scales - has implications for the persistence, or 
otherwise, of coherent eddies in turbulent flows. The more recent results of Craik 
& Allen (1992) and Bayly et al. (1996) on time-periodic flows, and their extension 
in the present paper to a new class of three-dimensional flows, show that the time- 
dependence of the basic flow can act to reinforce the elliptical instability through the 
creation of new parametric instability bands. 

We expect very few swirling flows to be stable, unless the spatial dimensions are 
sufficiently small that viscous damping is considerable. Such flows as are inviscidly 
stable will either have circular streamlines or - as for elliptical flows in a rotating 
frame - will have vorticity close to zero in an inertial frame. Virtually any externally 
driven large-scale vortical flow within an asymmetric container is likely to be highly 
unstable to broad-band disturbances of the sort exemplified here. This implies 
that the natural state of such flows will be turbulent. Just one caveat should be 
mentioned: it is possible that weakly unstable, almost-circular flows can be stabilized 
by the application of periodic stretching and contraction with appropriate magnitude 
and frequency. This could come about through detuning of potentially unstable 
wavenumbers, when stretching and contraction alter their orientation sufficiently. 
Such stabilization could take place only at frequencies that do not admit other 
resonances directly due to the forcing. However, in the example just studied, where 
the oscillatory basic flow induces both tilting and stretching of disturbances, no such 
stabilization was observed and additional resonances were found. 

The present work provides a new model for the local evolution and instability of 
more complex, possibly turbulent, flows. Also, flows within ellipsoidal configurations 
like those studied here are of considerable geophysical and astrophysical interest. 
For instance, Malkus’ (1968) experiment led him to suggest that precession might 
sustain the Earth’s magnetic field; and this provided an impetus for his later ex- 
periment (1989) (see also Vladimirov, Ribak & Tarasov 1993; Manasseh 1992) that 
clearly demonstrated elliptical instability. Lebovitz & Lifschitz (1996) have recently 
shown that the family of steady stellar structures known as self-gravitating Riemann 
ellipsoids are similarly subject to elliptical instability. There will be a corresponding 
family of time-dependent flows within an ellipsoidal configuration which, in view of 
the present study, may be expected to be even more unstable. 

The universality of broad-band, inviscid, parametric instability within a wide class 
of flows with spatially uniform vorticity now seems firmly established. Other such 
flows are now amenable to similar analysis, employing the new method of Bayly et 
al. that is used here. 

We are grateful to B. J. Bayly, D. D. Holm and A. Lifschitz for making available 
to us a preprint of their paper. G.K.F. was supported by a University of St Andrews 
Guthrie Studentship during this work. 
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